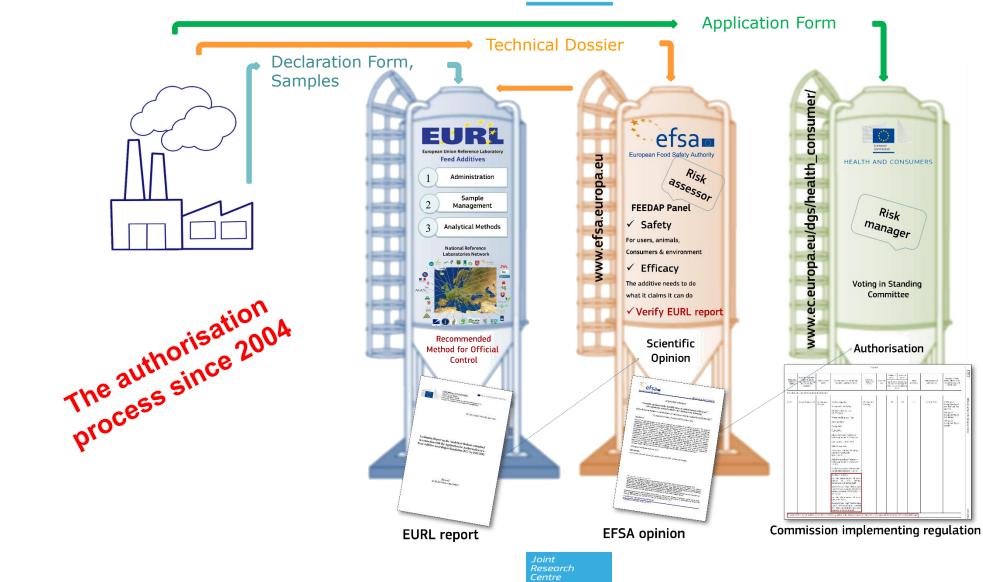


European Union Reference Laboratory for **Feed** Additives (EURL-FA): Experience from 11 years organising proficiency testing

26–27 November 2024, Berlin, BFR

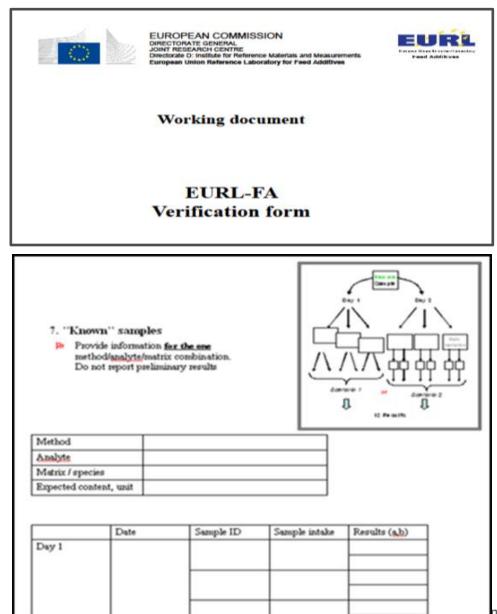
Christoph von Holst, Federica Serano, Mostafa Chedin and Ursula Vincent

Joint Research Centre


The EURL-FA: Two tasks

Support the authorisation of feed additives by evaluating analytical methods submitted by the industry

Organising proficiency testings and training courses for National Reference Laboratories


Analytical methods: Requirements for the applicant

Cascade approach:

- 1. Union methods
- 2. CEN/ISO method etc
- 3. Single lab validated method

Second laboratory verification

- SOP according to ISO 78-2
- In-house validation: Method
 performance
- Second laboratory verification

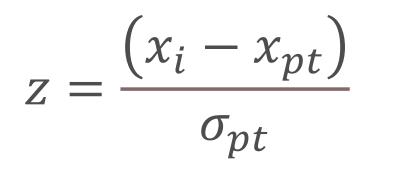
Authorisation regulation: Example

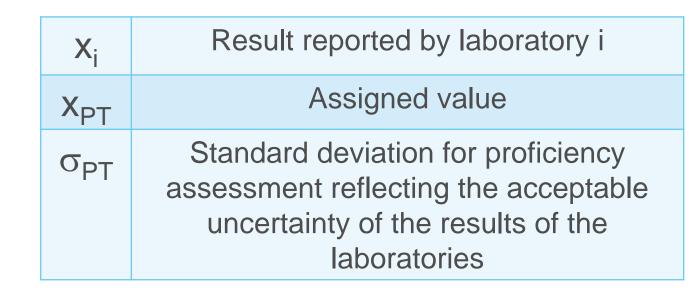
Identification number of the additive	Name of the holder of authorisation	Additive (Trade name)	Composition, chemical formula, description, analytical method	Species or category of animal	Maximum age	substance/kg feedingstuff w	Maximum content f active of complete rith a moisture of 12 %	Other provisions	End of period of author ation	Maximum Residue Limits (MRLs) in the relevant foodstuffs of animal origin
Coccidiosta	ts and historyor	ostats				1				
5 1 771	Janssen Pharmaceuti N.V.	Diclazuril 0,5 g/100 g (Clinacox 0,5 %)	Additive composition Diclazuril: 0,50 g/100 g. Protein-poor soybean meal: 99,25 g/100 g Polyvidone K 30: 0,20 g/100 g Sodium hydroxide: 0,05 g/100 g Characterisation of the active substance Diclazuril, $C_{17}H_9Cl_3N_4O_2$, (\pm)-4-chlorophenyl[2,6-dichloro4- (2,3,4,5-tetrahydro-3,5-dioxo-1,2,4-triazin-2- yl)phenyl]acetonitrile, CAS number: 101831-37-2 Related impurities: Degradation compound (R064318): $\leq 0,1$ % Other related impurities (T001434, R066891, R068610, R070156, R070016): $\leq 0,5$ % individually Total impurities: $\leq 1,5$ % Analytical method (1) For determination of diclazuril in feed: reversed-phase high performance liquid chro- matography (HPLC) using Ultraviolet detection at 280 nm (Regulation (EC) No 152/2009) For determination of diclazuril in poultry tissues: HPLC coupled to triple quadrupole mass spectrometer (MS/MS) using one precursor ion and two product ions	Guinea fowls		1	1	 The additive shall be incor- porated in compound feed in form of a premixture. Diclazuril shall not be mixed with other coccidiostats. For safety: breathing protection, glasses and gloves shall be used during handling. The holder of the authori- sation shall carry out a post-market monitoring programme on the resistance to bacteria and <i>Eimeria</i> spp. 	16 March 2021	1 500 μg diclazuril/kg of wet liver 1 000 μg diclazuril/kg of wet kidney 500 μg diclazuril/kg of wet muscle 500 μg diclazuril/kg of wet skin/fat

(1) Details of the analytical methods are available at the following address of the Community Reference Laboratory: www.irmm.jrc.be/crl-feed-additives

Evaluation of results from proficiency testing (PTs)

The actual pupose of PTs is to evaluate the proficiency of laboratories


Here we use the results to gain even more information from PTs

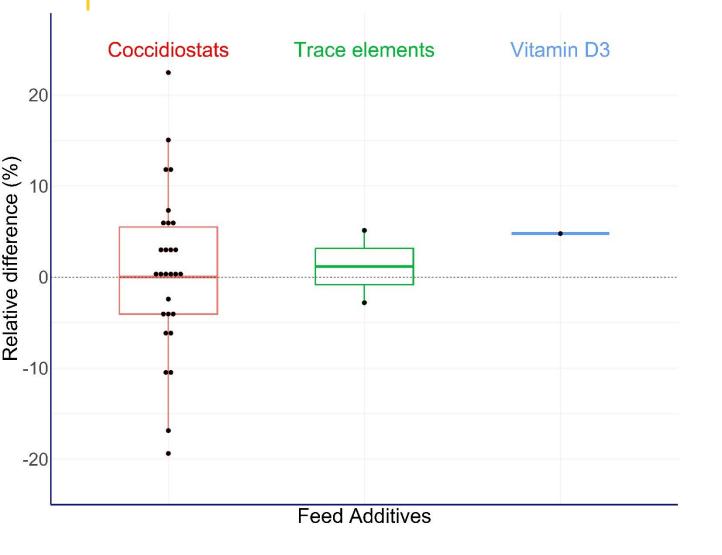

4 Examples are given

The z-score: Some key aspects

Reference: ISO 13528

Performance of *individual* laboratories:

- A result that gives $|z| \le 2,0$ is considered to be acceptable.
- A result that gives 2,0 < |z| < 3,0 is considered to give a warning signal.
- A result that gives $|z| \ge 3,0$ is considered to be unacceptable (or action signal)


Assigned value and average bias of laboratories

- Assigned value from *external* sources
- Bias assement: Comparison of robust mean of laboratories with assigned value

Feed additve	x_{pt}
Coccidiostats	Formulation (spiking with solution of pure substances)
Vitamin D ₃	Formulation (mixing with preparation)
Cobalt, Selenium	External laboratories using reference methods

Assigned value and bias of laboratories

 $Rel_Diff(\%) = \frac{100 \times (x_{Rob} - x_{pt})}{x_{pt}}$

Rel_Diff (%)= Relative difference X_{Rob} = Robust mean of laboratories' results X_{pt} = Assigned value

Data basis

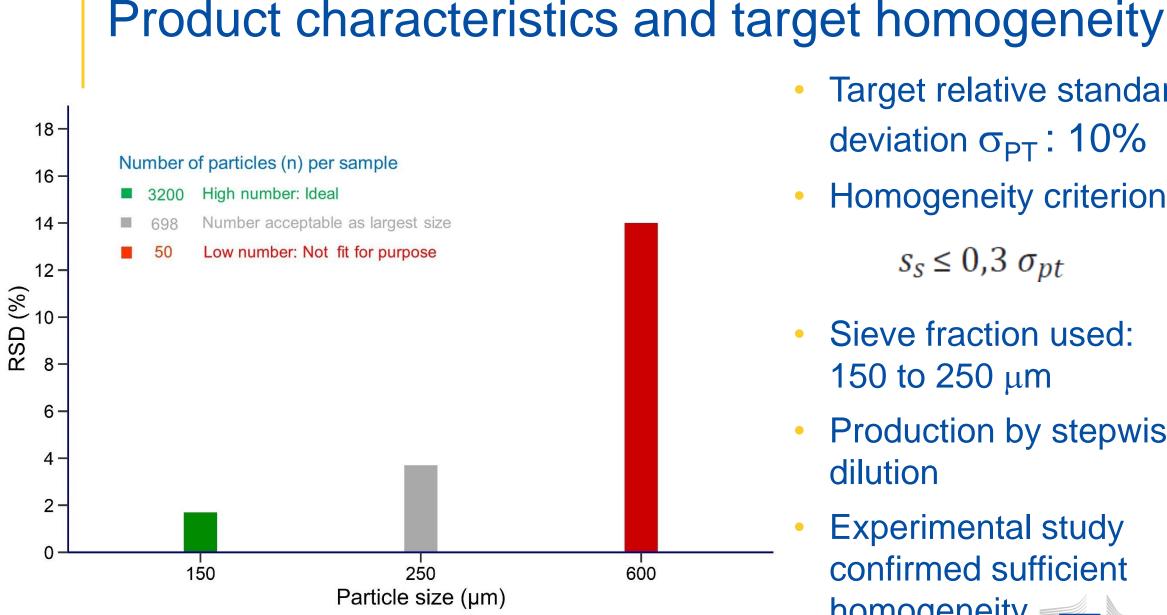
- Each dot reflects a PT for a single analyte
- 31 coccidiostats
- 2 trace elements
- 1 vitamin D₃

Results

• Overall average bias below 6%

Test material with carotenoids: Via encapsulated products

Production of homegenous material: Do I have a sampling problem?


Mass fraction carotenoid in the product	10 %
Mass fraction carotenoid in feed	20 mg/kg
Required amount of the product in 20 g feed	4 mg

Estimation of sampling error (SE)

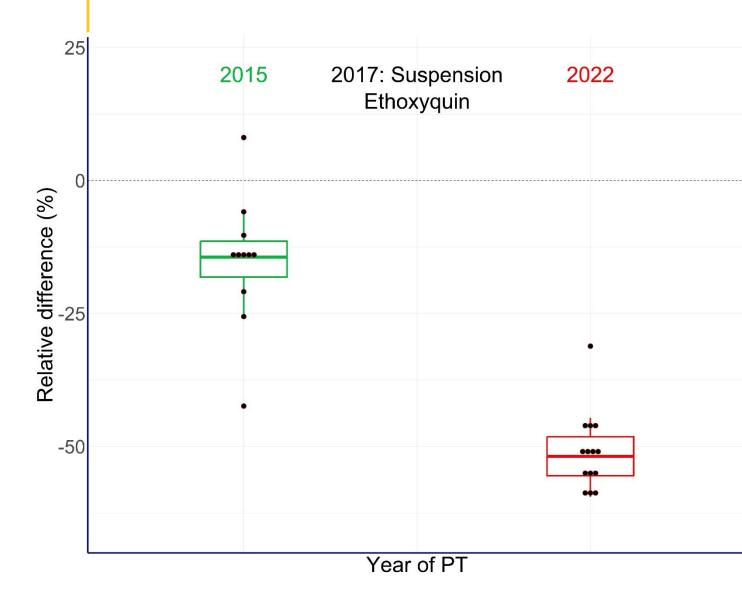
SE	(%)=	100×	\sqrt{n}
	(70)	10073	n

Particle size (µm)	Absolute number in 20 g sample
600	16
250	129
150	3200

- Target relative standard deviation σ_{PT} : 10%
- Homogeneity criterion:

 $s_s \leq 0, 3 \sigma_{pt}$

- Sieve fraction used: 150 to 250 µm
- Production by stepwise dilution
- **Experimental study** confirmed sufficient homogeneity European

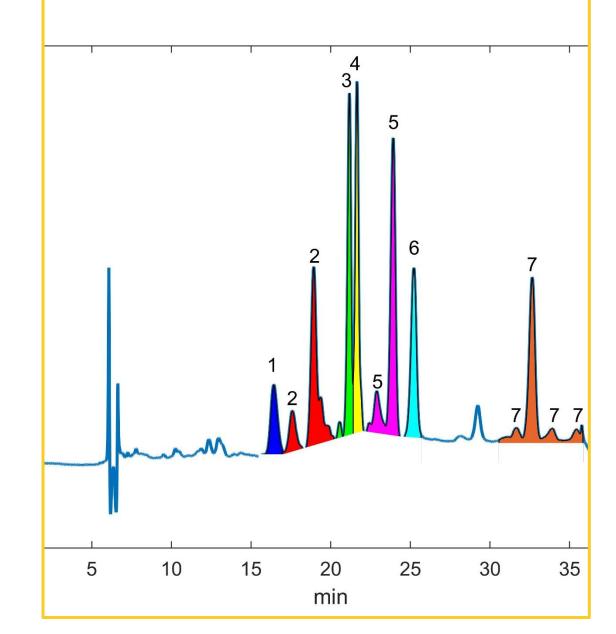

Ethoxyquin is an antioxidant

- Authorised for many years as feed additive as important antixidiant
- Helps stabilise vitamin A in preparation
- Contains mutagen p-phenetidine

2015/2022	EFSA cannot conclude on safe levels of ethoxyquin in feed
2017	The Commission suspended the authorisiation of ethoxyquin
2024	The Commission denies the authorisation of ethoxyquin

Is there a problem with vitamin A determination ?

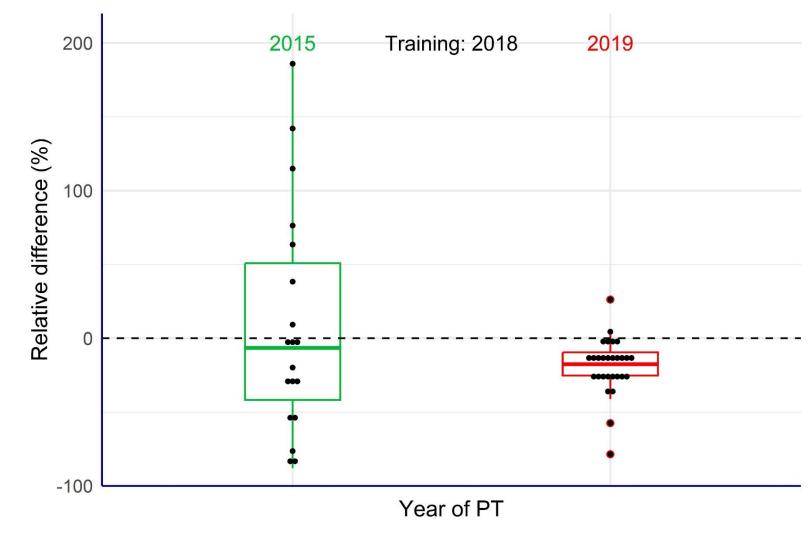
 $Rel_Diff(\%) = \frac{100 \times (x_{lab} - x_{label})}{x_{label}}$


Rel_Diff (%)= Relative Difference (%) X_{lab} = Result of laboratory X_{label} = Vitamin A content on the label

- PT data used to simulate official control for label information
- Difference aboratories 'results from labelled vitamin A level
 - 2015: low
 - 2022: Large
- Hypothesis: Stability problems linked to ban of ethoxyquin

Determination of carotenoids

- Challenging task
- Very sensitive substances measured with LC-UV/DAD
- Multianalyte method for 10 authorised carotenoids
- Encapsulated products require enzymatic step
- Cis trans isomers
- Normal versus RP LC
- 2022 CEN method 17550
 - Isosbestic approach
 - RP LC method


Training and NRLs: Effect shown by PTs

$$Rel_Diff(\%) = \frac{100 \times (x_{lab} - x_{pt})}{x_{pt}}$$

2015 PT showed poor results2018 EURL organised training

2019 PT showed significant improvement

Key aspects

- Feed additives cover a large range of different products
- Likewise, analytical methods are quite different
- For important feed additives, Union methods or CEN standards are available
- Feed additive register: <u>https://food.ec.europa.eu/food-safety/animal-feed/feed-additives_en</u>
- EURL reports and methods: <u>https://joint-research-centre.ec.europa.eu/eurl-fa-eurl-feed-</u> <u>additives_en</u>
- If you have questions: christoph.von-holst@ext.ec.europa.eu

