

High-Performance Thin-Layer Chromatography analysis of E 471 and E 472 emulsifiers: analytical approaches and challenges

27/11/2024, PD Dr. habil. Claudia Oellig

Institute of Food Chemistry
Department of Food Chemistry and Analytical Chemistry

Analysis of E 471 and E 472 emulsifiers – agenda

- Introduction
 - → What are E 471 and E 472 emulsifiers and challenges with their use?
 - → Why high-performance thin-layer chromatography (HPTLC)?
- Analysis of E 471 emulsifiers by HPTLC
 - → fingerprint analysis and quantification in whipping cream
 - → changes during storage
- Analysis of E 472 emulsifiers by HPTLC
 - → fingerprint analysis and quantification in foamed foods
 - → automated data evaluation

11/27/2024 2

Introduction

Introduction: What are E 471 and E 472 emulsifiers?

E 471 emulsifiers

mono- and diacylglycerols (MG/DG) of fatty acids of edible fats/oils

"pure" MG or mixtures of MG/DG

E 472 emulsifiers

organic/fruit acid esters of MG/DG of fatty acids

OH O OH OH OH OH	
ds &	НО

Group	Name	Abbreviation
E 472a	Acetic acid esters of MG/DG of fatty acids	ACETEM
E 472b	Lactic acid esters of MG/DG of fatty acids	LACTEM
E 472c	Citric acid esters of MG/DG of fatty acids	CITREM
E 472d	Tartaric acid esters of MG/DG of fatty acids	TARTREM
E 472e	Mono and diacetyl tartaric acid esters of MG/DG of fatty acids	DATEM
E 472f	Mixed acetic and tartaric acid esters of MG/DG of fatty acids	MATEM

→ Used in various foods (e.g., dairy products)

Introduction: Challenge with E 471 and E 472 emulsifiers

(Highly) complex mixtures

- no characterized purified substances
- composition varies depending on raw material/production
- different by-products (glycerol, free fatty acids (FFA))

Variations in composition

- → variations in techno-functionality
- → affecting food quality

- → fast and easy-to-perform methods for E 471 and E 472 analysis needed
 - <u>characterization</u> of the composition
 - quantification in food (dairy products, foamed food formulations)

High-performance thin-layer chromatography (HPTLC)

- separation of analytes on planar thin-layers
- many stationary/mobile phases, selective detection options
- high degree of instrumentation and automation
- selective, sensitive, and reproducible
- high sample throughput and simultaneous development
- low solvent and energy consumption
- fingerprint analysis

Analysis of E 471 emulsifiers by HPTLC

Analysis of E 471 emulsifiers – fingerprint and quantification

HPTLC-FLD[1]

layer: Lichrospher HPTLC silica gel

impregnation: fluorescent dye (primuline)

development: 1st: diethyl ether

2nd: *n*-pentane/*n*-heptane/diethyl ether

detection: fluorescence scan at UV 366/>400 nm

- → separation of substance classes of E 471
- → simple-to-perform visual analysis (fingerprint), fast comparison between products/lots
- → quantification based on one calibration substance (1,2-DG), sum value for each class^[2]

Analysis of E 471 emulsifiers – changes during storage

- Influence of high temperature (70-80°C) during storage
 - → chemical composition/techno-functional properties (whipping cream)
 - \rightarrow example: MG/DG emulsifier, mainly saturated free fatty acids (FFA)^[3]

[3] Blankart, M., et al. (2020). Journal of Food Engineering 277, 109882.

Analysis of E 472 emulsifiers by HPTLC

Analysis of E 472 emulsifiers – fingerprint

HPTLC-FLD^[4]

- layer: HPTLC silica gel
- development: 1st: chloroform/methanol/H₂O/formic acid
 - 2nd: *n*-heptane/diethyl ether/formic acid
- derivatization: fluorescent dye (primuline)
- detection: fluorescence scan at UV 366/>400 nm

E 472 emulsifiers (samples and lots)

- → separation of substance classes of E 472 subclasses a-c
- → simple-to-perform visual analysis (fingerprint)
- → comparison and characterization of E 472 emulsifiers

Analysis of E 472b emulsifiers – quantification in foamed foods

• analysis of E 472b emulsifiers in foamed food formulations^[5] – sample preparation

Analysis of E 472b emulsifiers – quantification in foamed foods

HPTLC-FLD^[5]

layer: HPTLC silica gel 60 F₂₅₄

development: 1st: chloroform/methanol/H₂O/formic acid lactic acid esters

2nd: *n*-heptane/diethyl ether/formic acid

• 1st detection: absorption scan at UV 254 nm

derivatization: fluorescent dye (primuline)

2nd detection: fluorescence scan at UV 366/>400 nm

calibration: solvent standard, 0.1-2.0% E 472b

- → determination of E 472b based on MG and lactic acid esters of MG
- → amounts (sum value) in five commercial products: 110-590 mg/100 g

Analysis of E 472b emulsifiers – automated data evaluation

digital fingerprint and barcode for comparison^[6]

selection of a set of emulsifiers (n = 21)

6 fold analysis of emulsifiers by HPTLC–FLD reproducible *h*R_F values? ✓ reproducible fingerprints? ✓

signal selection $(\alpha-\delta)$ and data preprocessing (ISTD)

determination of maximal signal intensities

Analysis of E 472b emulsifiers – automated data evaluation

digital fingerprint and barcode for comparison^[6]

calculation of Spectral Similarity Scores (SSS)

- intensities of one/an emulsifier are compared with the mean values of the intensities of 21 emulsifiers
 - → each comparison leads to one SSS
 - → 21 SSS per emulsifier ("numeric fingerprint/barcode")

graphical visualization (→ SSS fingerprint)

- - → visual comparison between emulsifiers possible
 - → emulsifier grouping based on SSS fingerprint similarity

- → easy visualization how similar a specific emulsifier is to another
- → applications: comparison of emulsifier lots, evaluation of storage influence

Thank you for your attention

