Acrylamidbildung in kohlenhydratreichen Lebensmitteln

Entwicklung von Minimierungsstrategien

(Wie kann man Herstellungsprozesse modifizieren, um die Acrylamidgehalte zu senken?)

Vortrag von N.U. Haase anläßlich der Veranstaltung "Acrylamid", BgVV Berlin, 29.08.2002

Erklärungsansätze für die Acrylamid-Bildung

Molekül Acrylamid

- LIPIDE (Glycerin Acrolein Acrylamid)
- niedermolekulare KOHLENHYDRATE
 (Zucker + Aminosäure --> Maillard-Reaktion
 Temp. > 120°C, reduz. Wassergehalt;
 alternativ: Karamelisierungsreaktion
- PROTEINE (Protein-Abbau: Proteolyse)

Minimierungsstrategien

Vermeidung der Acrylamid-Bildung:

- 1.) Identifizierung relevanter Einflußfaktoren
- 2.) Beseitigung oder Abschwächung dieser Faktoren
- 3.) keine Acrylamid-Bildung bei
 - Prozesstemp. kleiner oder gleich 100°C (Speisekartoffeln; Müsli (teilweise))
 - weitgehendem Fehlen von Kohlenhydraten (Fleisch)

Acrylamid - was ist bekannt? (I)

Produktgruppe "Brote" / "Kleingebäck"

- oft geringe oder mittlere Belastung (< 1000 μg/kg)
- Ölsaaten: höhere Werte
- keine Informationen über Kruste/Krume-Relation
- Trockenflachbrote: sehr starke Schwankungen

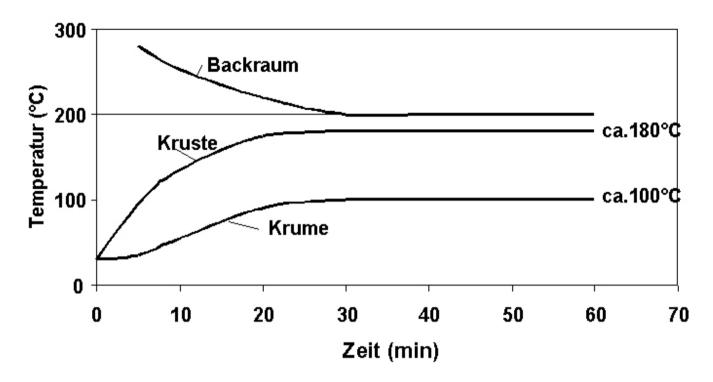
Produktgruppe "Feine Backwaren"

- Kekse (Dauerbackware): sehr starke Schwankungen

Acrylamid - was ist bekannt? (II)

Produktgruppe Kartoffel "Pommes frites"

- Teilfertigprodukt
- starke Schwankungen; teilweise hohe Belastung


Produktgruppe Kartoffel "Kartoffelchips"

- Fertigprodukt
- sehr starke Schwankungen; teilweise sehr hohe Belastung

Minimierungsstrategien - was kann man tun?

1. Brote – Kleingebäck – Feine Backwaren

- Vermeidung freier <u>Zucker</u> Wirkung? Akzeptanz? Rezepturveränderung Fructose/Glucose in der Rezeptur Problem Hefe-gelockerte Teige (Gärung) Gär-Knäckebrot
- Reduzierung <u>Backtemp. und -dauer</u>
 Wirkung?
 Backtechnisch realisierbar?
 Backraumtemp. von 250°C --> 150°C

Schematische Darstellung des Temperaturverlaufs während des Backens eines Mischbrotes

- Geschmack (Aromakomponenten)
- Einfluss der <u>Zutaten</u> (Bsp. Ölsaaten -- Sonnenblumenbrot)

Minimierung Acrylamidgehalte in Brot, Kleingebäck und Feinen Backwaren

Versuchsansätze:

- Keksherstellung mit variablen Rezepturen (Zucker)
- Keksherstellung mit unterschiedl. Backtemperaturen
- Brotherstellung (Weizen)
 - -- Einfluss der Backtemperatur
 - -- Einfluss einer stark gebräunten Kruste
 - -- Einfluss einer Ölsaaten-Aufstreu (am Beispiel Sonnenblume)
 - -- Einfluss des <u>pH-Wertes</u> (Bsp. Laugengebäck)
- Extruderprodukt (Flachbrot) Maillardprodukte?
 - -- Einfluss Druck/Temperatur
 - -- Einfluss Rezeptur (Zucker)

Minimierungsstrategien - was kann man tun?

- 2. Kartoffelerzeugnisse
- 2.1 Pommes frites
- Schema Herstellung -

2.1.1 Veränderung der Herstellung (Vorfrittieren)

- Einfluss der <u>Kartoffelsorte</u> (Reifegrad, Inhaltsstoffe)
- Einfluss der Schnittform ("6 x 6" vs. "14 x 14")
- kann man den Faktor "Zucker" beeinflussen? (Aspekte Anbau, Lagerung, Auslaugung) Pommes frites-Kartoffeln: < 0,25% red. Zucker
- Lagerung
- wirkt sich das verwendete Öl/Fett aus?
- kann die <u>Temperatur</u> gesenkt werden? (Vorfrittieren von 140° 180°C)
- wie wirken sich die Maßnahmen auf die Qualität aus? → Genusswert? → Konsumentenakzeptanz?

2.1.2 Änderungen der Zubereitungsvorschriften

- Pommes frites für den Backofen
 - -- Absenkung der Ofentemperatur?
 - --> Verlängerung der Backzeit Krossheit?
- Pommes frites für die Fritteuse
 - -- Absenkung der empfohlenen Fritteusentemp. in Verbindung mit verlängerter Zubereitungszeit --> Krossheit?
 - -- bessere Temperaturkontrolle?

2.2 Kartoffelchips

- Schema Herstellung -

2.2.1 Kartoffelchips

- Einfluss der <u>Kartoffelsorte</u>? (Reifegrad, Inhaltsstoffe)
- Faktor "Zucker"
 (Aspekte Anbau, Lagerung)
 Chips-Kartoffeln: < 0,15% red. Zucker
- Faktor Lagerung
- Faktor "Öl/Fett"
- Faktor "<u>Temperatur</u>" (Frittiertemp. 170° - 190°C; Vakuumfritteuse mit 90°C möglich)
- Auswirkung auf Qualität? → Genusswert? → Konsumentenakzeptanz?

Acrylamidgehalte in Kartoffelchips

Ein erstes Ergebnis (nicht repräsentativ; Analytikdaten für Acrylamid nicht validiert, deshalb nicht konkret genannt)

1. Einfluss der Lagerungstemperatur

Kartoffeln von 2 Sorten wurden 8 Monate lang bei 8°C und 95% rel. Luftfeuchte gelagert. Danach wurden sie für 6 Wochen bei +4°C gelagert. Die Analysendaten der Kontrolle wurden gleich 100 gesetzt.

	Reduz. Zucker	Chips- farbe	Fettgehalt Chips	Acrylamid- gehalt
Sorte 1	+ 2%	± 0%	- 6%	± 0
Sorte 2	+ 58%	- 47%	+ 3%	++++

2. Absenkung des Zuckergehaltes (Blanchieren)

Kartoffeln von 2 Sorten wurden 9,5 Monate lang bei 8°C und 95% rel. Luftfeuchte gelagert. Das Blanchieren erfolgte in einem semitechnischen Blancheur (T: 82°C; 2 Minuten Verweildauer). Die Ergebnisse der nicht-blanchierten Probe wurden zu 100 gesetzt.

	Reduz. Zucker	Chips- farbe	Fettgehalt Chips	Acrylamid- gehalt
Sorte 1	- 80%	+ 11%	+ 7%	
Sorte 2	- 70%	± 0%	+ 17%	

3. Einfluss der Frittiertemperatur

Kartoffeln von 1 Sorte wurden 9,5 Monate lang bei 8°C und 95% rel. Luftfeuchte gelagert. Das Frittieren erfolgte bei 3 Temperaturen unter Anpassung der jeweiligen Frittierzeit. Das Ergebnis der 175°C-Variante wurde zu 100 gesetzt.

	Reduz. Zucker	Chips- farbe	Fettgehalt Chips	Acrylamid- gehalt
150°C	± 0%	+ 15%	+ 3%	
170°C	± 0%	+ 15%	- 2%	-
190°C	± 0%	+ 8%	- 4%	+

4. Einfluss des Rohstoffes

Kartoffeln von 1 Sorte (2 Herkünfte) wurden 9,5 Monate lang bei 8°C und 95% rel. Luftfeuchte gelagert. Herkunft 1 wurde unter kontrollierten Bedingungen in Kisten gelagert; Herkunft 2 wurde im Haufenlager gelagert. Das Ergebnis der Kistenlagerung (nicht blanchiert; Frittiertemp. 175°C) wurde zu 100 gesetzt.

	Reduz. Zucker	Chips- farbe	Fettgehalt Chips	Acrylamid- gehalt
Herk. 1; n. bl.	100	100	100	100
Herk. 2; n. bl.	+ 86%	- 28%	± 0%	+++
Herk. 1; bl.	- 80%	+ 11%	+ 7%	
Herk. 2; bl.	- 32%	+ 5%	+ 17%	(+)

---- ENDE VORTRAG -----