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Pesticide exposure and Parkinson's disease: BfR sees association but no 
causal relationship 
 
BfR Expert Opinion No. 033/2006, 27 June 2006 
 
Parkinson's is a slow progressive neurodegenerative disorder which mainly occurs in later 
life. In the course of this disease the brain cells that produce the messenger substance, do-
pamine, die off. This important neurotransmitter conducts impulses between the nerves. If 
insufficient quantities are present, then the typical symptoms of Parkinson's like muscle rigid-
ity, muscle tremor or loss of movement down to akinesia occur. The causes of Idiophatic 
Parkinson's Syndrome (IPS) are still largely unknown. Besides age-related degenerative 
changes and genetic factors, discussions mainly focus on environmental and dietary factors. 
For instance, pesticides could also be a risk factor. On the basis of a comprehensive evalua-
tion of the available literature, the Federal Institute for Risk Assessment (BfR) outlines its 
opinion below on whether exposure to pesticides could encourage the disease. 
 
The association between Parkinson's disease and pesticide exposure was examined from 
two angles. Firstly, epidemiological studies were evaluated. Based on a comparison of the 
incidence of the disease in a group of the population exposed to pesticides and a non-
exposed comparison group, conclusions can be drawn about possible associations. Then, 
the biological mechanisms of action of a few pesticides were analysed in order to answer the 
question whether they can indeed induce the reactions responsible for the pathogenesis of 
Parkinson's. To this end, the substances paraquat, maneb and rotenone were examined by 
way of example. MPTP, a by-product of a heroin substitute which has led to Parkinson-like 
symptoms in drug addicts, was also examined. The example MPTP has shown that Parkin-
son's disease can be induced by chemicals. BfR comes to the following conclusions: 
 
The epidemiological studies evaluated point to an association between exposure to pesti-
cides and Parkinson's disease. However, up to now it was not possible to identify either one 
individual pesticide or a combination of different pesticides as the trigger. Even if individual 
pesticides may influence dopamine status, a biological plausibility cannot be sufficiently de-
termined in experiments which could explain the onset of Parkinson's disease. Hence a 
causal relationship between pesticide intake and the onset of the disease in humans cannot 
be confirmed at the present time. 
 
1    Subject matter of the evaluation 
 
A considerable amount of scientific literature has been published in recent years on the sub-
ject of "pesticides and Parkinson's disease". The Federal Institute for Risk Assessment (BfR) 
drew on this material in its assessment of a possible association. To recapitulate, the Insti-
tute considers not only the possible epidemiological evidence but also biological plausibility 
on the basis of experimental studies. A total of around 250 publications were examined. 
 
2    Results 
 
Like the Medical Research Council Institute for Environment and Health and the National 
Centre for Environmental Toxicology, both UK (Brown et al., 2006), BfR comes to the follow-
ing conclusions. There is indeed an association between pesticide exposure and Parkinson's 
disease. However, the available evidence is not sufficient to reliably confirm a causal rela-
tionship. A concrete causal relationship does not, therefore, exist either for an individual pes-
ticide or for a combination of specific pesticides. 
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3    Reasons 
 
3.1 Introduction 
 
In Europe and North America Parkinson's disease is the second most frequent degenerative 
disorder of the central nervous system (CNS) with a prevalence of just under 0.1% in the 
overall population and of slightly more than 1% in the population aged 60 and older. The 
symptoms typically manifest as the trias: bradykinesia or hypokinesia, rigour and tremor. This 
is due to a cell loss  of transmitter systems in the central nervous system. The main system 
affected is the dopaminergic nigrostriatal system although the noradrenergic system may 
also be damaged. Typical Parkinson's symptoms occur from a reduction of the dopaminergic 
function by around 70-80%, i.e. when most of the nigrostriatal system has already been irre-
versibly damaged. The course of the disease is chronically progressive. 
 
(Idiopathic) Parkinson's Syndrome (IPS) mainly occurs in later life (onset 60-65 years of age) 
without any identifiable causes. The cause of the degeneration is still not clear. Many possi-
ble risk factors are under discussion. Environmental and dietary factors like for instance ex-
posure to heavy metals, age-related degenerative changes and, more recently, genetic fac-
tors are all being discussed. The varying prevalences of Parkinsonism around the world 
could be seen as evidence of a possible genetic predisposition. There are growing signs that 
interaction between genetic predisposition and environmental factors plays a role. In the 
case of Parkinson's disease amongst younger people (prior to age 50) an exclusively genetic 
basis for the disease can be assumed on the basis of studies involving twins with 100% con-
cordance in the case of identical twins. The current level of knowledge indicates that for most 
of the forms of Parkinson's syndrome in older people, there may be interaction between envi-
ronmental factors, genetic factors, certain characteristics  of the brain areas affected and age 
during the disease which means that this is probably a multi-factor event. 
 
In what follows BfR assesses the possible importance of environmental factors. In this con-
text the Institute restricts itself to pesticides and their interaction with other pathogenic factors 
of nigrostriatal degeneration. 
 
3.2 Epidemiological evidence 
 
3.2.1 Choice of studies 
 
BfR commissioned a meta-analysis of published epidemiological studies in order to examine 
the epidemiological evidence. Furthermore, data from the so-called "Geoparkinson Study" 
financed by the European Union involving several countries, were included in the meta-
analysis. The study has not yet been published. However, BfR was given the results in ad-
vance for this assessment (Seaton et al., 2005) 
 
From this literature search the studies were selected that meet the following criteria. The 
study  
 

1) contains data on the recording or definition of pesticide exposure and on the diagno-
sis method and/or the definition of Parkinson's disease. 

2) is a cohort or case control study. 
3) contains data on the odds ratio or the relative risk, the related confidence interval and 

the variance of the odds ratio or provides sufficient information in order to calculate 
the estimator, the confidence interval and the variance of the estimator.  

4) was published in German or English.  
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62 studies in total were identified which examine associations between environmental risk 
factors and the occurrence of Parkinson's disease. 38 studies fulfilled the inclusion criteria 
and were included in the analysis. The main reasons for the exclusion of the other studies 
were the lack of an odds ratios, insufficient information to calculate the odds ratios as well as 
too low case numbers. No time restriction concerning the publication of the studies was im-
posed. 
 
3.2.2 Assessment of exposure recording  
 
Pesticide exposure was recorded in different ways in the individual studies. There are differ-
ences regarding the definition of exposure, the level of exposure and the time of exposure in 
relationship to the manifestation of symptoms and the way in which the test persons were 
interviewed. The test persons were asked about their own use of pesticides or their contact 
with pesticides at work, in the home or during their free time. The reliability of the answers 
depends heavily on the test persons’ power of recollection and this can influence the study 
results. In many studies the test persons were only asked about their use and frequency of 
use of pesticides at work. Other studies, by contrast, recorded their own use at work and in 
the home or asked the test persons about the use of various products available commer-
cially. In some cases information from the local agricultural office on the consumption of pes-
ticides in the region was also included. Other authors developed a score that covered place 
of residence, professional activity as well as length of professional activity or defined pesti-
cide exposure as being regular contact for a continuous period of at least six months. In one 
study there had to have been contact for at least 20 days a year over a period of at least five 
years. Another study weights the number of years by contact frequency in order to establish 
a dose-response relationship. In yet another, a distinction was only made between whether 
there had been exposure for less or more than 20 years. These differences in the recording 
and assessment of pesticide exposure are partly responsible for the inconsistency of the 
study results. This might be one explanation for the major degree of heterogeneity in the 
study results and questions whether a uniform approach  can be adopted  for all the studies. 
 
3.2.3 The role of confounding 
 
In order to take account of possible confounders in a meta-regression evaluation, during the 
data extraction it was examined whether the respective studies had been adjusted, for in-
stance, for "smoking" as smoking is under discussion as a protective factor against Parkin-
son's. This information was not available for all studies. When doing the meta-regression 
taking into account heterogeneity, the effect of adjustment for smoking disappeared. The 
evaluation also took account of whether the corresponding studies had been age adjusted 
which was generally the case. 
 
Even when all the covariates in the meta-regression were taken into account, there was still 
a clear heterogeneity between the studies. This can be considered to be residual confound-
ing, i.e. there are covariates which were not taken into account but which could influence the 
result. For instance, genetic predisposition was only considered in more recent studies for 
instance by Seaton et al. (2005). This could be one explanation of the residual confounding.  
 
When assessing the role of randomness with the help of specific statistical models, statisti-
cally significant associations could be identified with the results of Parkinson's disease when 
considering pesticide exposure. From this it can be concluded that these associations are not 
random. 
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3.2.4. Association or causal relationship 
 
Hill’s criteria (1965) were used to assess the results regarding a causal relationship. They 
make a major contribution to assessing complex associations between disease and possible 
risk factors. 
 
The quantitative analysis was done with statistical methods, stratified according to the sub-
stance groups herbicides, insecticides and pesticides. There were contradictory results for 
herbicides and insecticides. Whereas some of the studies pointed to an association between 
exposure and Parkinson's disease, other studies pointed to a protective effect. Also when 
considering a specific substance like paraquat, a consistent association could frequently not 
be found. In the case of men and women exposed at work and at home, there was also a 
certain degree of heterogeneity. However, overall a positive association was found between 
pesticide exposure and Parkinsonism. Overall, there is therefore a relatively consistent asso-
ciation in the global consideration of pesticides. 
 
Another Hill criterion, the lack of alternative explanations, was used. In the studies there are, 
however, alternative explanations. Exposure to pesticides is only a potential risk factor. The 
major degree of heterogeneity between the studies also points to the presence of non-
considered factors. 
 
The dose-response relationship was examined using various operationalisations. In this con-
text an association could be shown between the dose and the odds ratio. Although the op-
erationalisations were rough simplifications, a dose-response relationship between exposure 
and Parkinson's disease can still be assumed.   
 
Not all of Hill's criteria must be met in order to establish a causal relationship. One essential 
criterion is, however, the presence of a time association. In epidemiology the time associa-
tion between exposure and the onset of the disease can only be assessed as a rule in cohort 
studies. In a separate assessment of the results – only four cohort studies were available – 
no association bearing in mind the heterogeneity observed was established between pesti-
cides and Parkinsonism. A time association between reported exposure and the onset of 
disease cannot, therefore, be unequivocally shown. 
 
By way of summary it can be said that consideration of the association between pesticide 
exposure and Parkinsonism reveals both weak (odds ratio  1.3) as well as moderate associa-
tions (odds ratio  2.16). A consistently higher odds ratio was observed in particular when 
considering the private and professional exposure of men and women to non-specific pesti-
cides. This consideration does, however, have the disadvantage that many of the substance 
groups were classified under one name. If one considers specific associations like for in-
stance insecticides, herbicides in general or more particularly the herbicide paraquat, then 
the results are inconsistent. The studies analysed show a clear heterogeneity. In some of the 
studies a protective effect was observed. Hence, only the association between pesticides in 
general and Parkinsonism can be described as relatively consistent. 
 
3.3 Biological plausibility 
 
3.3.1 Mechanistic approaches 
 
The epidemiological results point to an association between pesticide exposure and Parkin-
son's disease. In order to underdertake an assessment of a causal relationship, mechanistic 
approaches to substantiate biological plausibility must be used. More recent explanatory 
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models for the onset for Parkinson's disease, therefore, endeavour to create an initial ex-
perimental basis of understanding. Specific approaches from biochemistry but also from mo-
lecular epidemiology should clarify whether the onset of Parkinson's disease is caused solely 
or at least partly by pesticide exposure and how the interaction between genetic and envi-
ronmental factors is to be understood. Up to now the biochemical mechanisms of the patho-
genesis of Parkinson's disease have not been fully elucidated. The available results can, 
therefore, only be seen as signs of a possible causal relationship which require further scien-
tific examination. 
 
For biological understanding it is important to know that in some animal models damage to 
dopaminergic neurons and Parkinson-like symptoms can be induced through the administra-
tion of specific substances. In this context it is relevant that specific pesticides contribute un-
der experimental conditions to damage to dopaminergic neurons in vivo and in vitro and typi-
cal Parkinson's symptoms and the histopathology typical for IPS can partially be reproduced. 
The molecular mechanisms involved here are diverse and intervene in fundamental cellular 
processes of energy and transmitter metabolism. As some of these mechanisms have since 
been examined in great depth, they are presented here. 
 
3.3.1.1 Lewy bodies 
 
The most noticeable cellular manifestation of nigrostriatal degeneration in conjunction with 
IPS and  most familiar forms of Parkinson's syndrome are intracellular protein aggregates, 
so-called Lewy bodies (LB). The main component of LB are pathological polymers of α-
synuclein, a presynaptic protein which is to be found in the entire central nervous system. 
Beside polymers of α-synuclein there are also parts of the ubiquitin-proteasome system 
(UPS) and heat shock proteins (HSPs) in the LB. UPS is the most important enzyme com-
plex for the repair and degradation of damaged cytoplasmatic proteins. HSPs are a large 
group of proteins with antioxidative and stabilising functions. They are expressed to a higher 
degree in conjunction with the elevated occurrence of damaged proteins and support UPS 
activity. Given their composition and location, LB can be seen as the expression of a dis-
turbed degradation of abnormal proteins. 
 
3.3.1.2 Ubiquitin-proteasome system (UPS) 
 
UPS is of key importance for a series of basic cellular processes, including the modification 
and degradation of proteins. Disruptions to its functioning seem to be both a result and cause 
in the process of neuronal degeneration with IPS and other degenerative disorders of the 
central nervous system. Inhibition of UPS in conjunction with IPS could result on the one 
hand indirectly from a change to the structure of its substrate, α-synuclein, or on the other 
from direct damage to its 26S sub-unit through oxidants. Numerous factors with a detrimental 
effect on the function of UPS in the pathogenesis of Parkinson's syndrome have been identi-
fied in recent years including gene mutations and toxic processes. Causes for the failure of 
UPS include more particularly  

• oxidative stress, encouraged by mitochondrial dysfunction and the action of specific 
substances;  

• properties of the tissue affected with elevated intrinsic exposure to oxidative meta-
bolic processes;  

• the occurrence of damaged proteins with modified confirmation and aggregation 
properties caused by oxidative stress and  

• gene mutations – above all mutations of the genes for α-synuclein, parkin and UCH-
L1 with modified substrate and enzyme properties.  
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α-synuclein probably plays a key role in the failure of UPS in IPS. Hence, UPS inhibition in 
the IPS animal model in α-synuclein knock-out mice is for instance far lower. 
 
3.3.1.3 Oxidative/nitrosative stress and inhibition of complex I in the mitochondrium 
 
In pathobiochemistry oxidative stress constitutes another set of factors contributing to ni-
grostriatal degeneration. It is closely linked to protein aggregation and is caused by an ele-
vated cellular strain from unstable and highly reactive compounds mainly peroxynitrite and 
the hydroxyl radical. Oxidative stress plays a role in many disorders not just IPS. However 
the cell population most affected in IPS - dopaminergic neurons of the substantia nigra pars 
compacta (SNc) - show a higher predisposition and vulnerability to oxidative stress. 
 
Despite considerable research over the last two decades the causes of oxidative stress in 
IPS have still not been clearly elucidated. The phenomenon can be partially explained by 
specificities in the energy metabolism of dopaminergic cells and the chemical properties of 
the neurotransmitter produced by them. Damage to the mitochondrial electron transport 
chain, elevated concentrations of metals and, more particularly, of transition metals like iron, 
copper and manganese in the brain areas concerned, the dopamine metabolism and inade-
quate protective mechanisms are known causes of oxidative stress. 
 
Oxidative stress inhibits various metabolism processes including mitochondrial energy  pro-
duction and protein modification and degradation through UPS. In this context it has been 
shown that polymerised α-synuclein in LB and in the inclusion bodies of other degenerative 
disorders of the central nervous system shows characteristic changes  in the form of nitroty-
rosine which can be  generated, for instance, by the action of peroxynitrite. The findings of an 
oligomerisation of α-synuclein by covalent bindings  in the presence of peroxynitrite backs 
this observation. Another manifestation of oxidative stress is damage to DNA and lipids. 
 
3.3.1.4 Cell death in nigrostriatal degeneration – apoptosis versus necrosis 
 
Cell death linked to dopaminergic degeneration is probably both apoptotic and necrotic. On 
the one hand there are numerous findings on apoptosis and fewer works on non-apoptotic 
cell death. On the other hand it should be borne in mind that necrotic cell death can be identi-
fied less specifically using markers than apoptosis.  
 
3.3.2 The role of model substances and pesticides in nigrostriatal degeneration 
 
Certain substances, as well as some pesticides, can clearly be directly involved in almost all 
of the above-mentioned processes of cellular cascade damage in IPS. They may promote 
conformation changes to α-synuclein and promote fibril formation, inhibit enzyme complexes 
of the respiratory chain and, in this way, prevent both energy harnessing and also contribute 
to the elevated production of free radicals, lead to depolarisation of the mitochondrial mem-
brane potential and cause, amongst other things, apoptosis. Redox-active substances like 
certain pesticides and, above all, metals can lead directly to the formation of radicals and, by 
extension, to the peroxidation of lipids, DNA and proteins. The mechanisms of action of 
MPTP/MPP+ and a few pesticides are presented and discussed below. 
 
3.3.2.1 MPTP/MPP+ 
 
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) was the first chemical substance for 
which selective damage to SNc in humans and other species could be demonstrated. MPTP 
is one example which shows that a chemical can induce Parkinson's syndrome and that IPS 
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could also be caused by other environmental factors. Furthermore, numerous findings on the 
biochemistry of nigrostriatal degeneration and important therapy approaches have been ob-
tained from MPTP animal models. 
 
In primates MPTP induces a severe, irreversible Parkinson's syndrome which reproduces all 
typical symptoms of Parkinson's disease in human beings with the exception of resting 
tremor. In terms of pathomorphology when administered sporadically MPTP causes a selec-
tive nigrostriatal lesion and is, therefore, the golden standard of Parkinson's models. Unless 
otherwise indicated, the findings presented below come from animal models with the spo-
radic administration of MPTP. The MPTP model with continuous MPTP application comes 
closest to the pathomorphology of IPS in humans because only in the case of continuous 
administration  damage  to the monaminergic systems beyond the dopaminergic system and 
the characteristic cellular pathology with protein aggregates in the form of LB  are obtained. 
In the case of systemic administration, MPTP crosses the blood-brain barrier within minutes 
and is metabolised in the glia and serotonergic neurons by monoaminoxidase B (MAO-B) 
into MPDP+ and MPP+. MPP+ is then carried by monaminergic transporters to all types of 
monaminergic neurons. This results in selective toxicity for dopaminergic neurons as, for 
example, scarcely any toxic effects are observed in adrenergic cells of the adrenal cortex in 
conjunction with comparatively higher tissue concentrations of MPP+. In the neuron MPP+ 
can bind to the vesicular monoamine transporter-2, can accumulate in the mitochondria or 
remain in the cytosol and interact with enzymes there. Accumulation in the mitochondrium 
with inhibition of complex l of the electron transport chain is probably the most important fac-
tor for the cytotoxic effect on dopaminergic neurons. The inhibition of complex l by MPP+ 
leads to a reduction of ATP production and to an elevated production of free radicals. Both 
effects could contribute to the degeneration of dopaminergic neurones. What seems to indi-
cate the importance of reduced energy supply in MPTP-induced nigrostriatal degeneration is 
that reduction of ATP production after administration of MPTP in the striatum and central 
midbrain is particularly developed and that an increase in ATP production via complex II 
through administration of a ketone body considerably reduces degeneration in MPTP-treated 
mice. Also synaptic mitochondria seem to be particularly sensitive to ATP reduction by inhibi-
tion of complex I. 
 
A second effect of the complex I blockade by MPP+ is the elevated production of reactive 
oxygen  species (ROS). Here there are reports of production of ROS  proportional to the de-
gree of complex I inhibition. What also seems to indicate the importance of elevated ROS 
production in MPTP-induced nigrostriatal degeneration is that modulations of antioxidative 
enzyme systems, like manganese superoxide dismutase, influence the scale of MPTP-
induced neurotoxicity. 
 
Cell death caused by inhibition of complex I in the MPTP animal model is probably mainly 
caused by apoptosis. The apoptosis path goes through p53-mediated upregulation of Bax, 
translocation of Bax to the mitochondrium, mitochondrial release of cytochrome-c and activa-
tion of the caspases 9 and 3. Bax clearly plays a key role here as genetically modified mice 
without expression of Bax are resistant to MPTP toxicity. Furthermore, MPTP leads to the 
accumulation and nitration of α-synuclein in dopaminergic neurones, a characteristic of ni-
grostriatal degeneration of IPS in humans. The continuous administration of MPTP also 
leads to the formation of IPS-typical α-synuclein and ubiquitin-containing inclusion bodies in 
the dopaminergic and noradrenergic neurons. 
 
By way of summary, MPTP/MPP+ leads by means of selective inhibition of the mitochon-
drial complex I with reduced ATP and elevated ROS production as well as the accumulation 
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and aggregation of α-synuclein to the described degeneration of SNc, probably primarily by 
means of apoptotic cell death. 
 
3.3.2.2 Paraquat 
 
Since the discovery of MPTP the bipyridyl paraquat (PQ) is suspected of being neurotoxic 
because of its structural similarity to MPP+ discussed here. In the European Union (EU) 
paraquat is authorised for use as a herbicide. This also applies to another substance in the 
bipyridyl group – diquat. 
 
The evidence for the neurotoxicity of PQ in experimental studies is clear: when administered 
systemically in vivo PQ leads to nigrostriatal degeneration with selective loss of dopaminer-
gic neurons in the animal model of the mouse. When administered systemically (i.e. intraperi-
toneal injection) PQ crosses the blood-brain barrier and is relatively evenly distributed in the 
various brain areas including the cortex, striatum, midbrain and cerebellum although there 
are far lower PQ concentrations in the brain than in other organs like for instance the lungs, 
kidneys or heart. PQ uptake in the brain is probably via LAT-1, a transporter of neutral amino 
acids. One indication is that the parallel administration of other LAT-1 substrates can reduce 
the PQ concentrations in the brain. A two-fold intraperitoneal injection of 10 mg/kg leads to a 
loss of around 30% of dopaminergic neurons in the SNc of the mouse. In parallel to the re-
duction in cell density, a highly significant increase in cells with signs of lipid and protein per-
oxidation was observed which is understood to be a sign of oxidative stress. In particular the 
proteins of the damaged cells had the characteristic of nitrotyrosines. This is a sign of oxida-
tive damage by peroxynitrite, which is also found in the LB of human beings in conjunction 
with α-synucleinopathies in the same way as in IPS. These observations are backed by find-
ings of a PQ-induced conformation change of α-synuclein with acceleration of the α-
synuclein fibril formation in vitro as well as a PQ-induced upregulation of α-synuclein with 
dose-related formation of amyloid-like fibrils in vivo. 
 
The mechanism of action of PQ is, however, different from that of MPTP/MPP+. PQ is proba-
bly not actively accumulated by mitochondria and does not seem to trigger any specific inhi-
bition of the mitrochondrial complex I. Nevertheless, the findings mentioned above do seem 
to indicate that oxidative stress plays an important role in PQ-induced nigrostriatal degenera-
tion. This assumption is backed by the findings of a protective effect of  

• superoxide-dismutase/catalase mimetics in vitro and in vivo, 
• ferritin overexpression and   
• coenzyme Q10.  

 
Regarding the mechanisms of action of PQ-dependent ROS  production, the following find-
ings are available: a number of studies have shown that PQ can lead to the production of 
various ROS in the presence of oxygen through redox cycling. Particularly at elevated con-
centrations of H2O2, which are possible for instance in conjunction with dopamine metabo-
lism or in the presence of redox-active iron, PQ also leads to the formation of the hydroxyl 
radical. In this context it could be shown that the cytotoxic effect of PQ can be considerably 
reduced by inhibiting dopamine intake or nitroxide synthase (NOS). These observations 
could indicate that H2O2 occurring in conjunction with dopamine metabolism enhances the 
PQ-mediated production of ROS and, more particularly, the production of the hydroxyl radi-
cal. The PQ-induced cell death is, as in the case of the MPTP/MPP+ discussed previously, 
probably apoptotic. PQ led by means of stress-activated protein kinases (SAPKs or JNKs) to 
caspase 3 activation. 
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By way of summary when administered systemically under experimental conditions PQ 
damages the nigrostriatal dopaminergic system. This effect of PQ probably results mainly 
from the production of ROS through redox cycling of PQ whereby this effect in dopaminergic 
neurons could be particularly strong owing to dopamine metabolites as well as redox-active 
iron compared to other neurons. 
 
3.3.2.3 Maneb 
 
The fungicide maneb (Mn-EBDC), authorised in Europe, belongs to the group of dithiocar-
bamates (DTCs). With regard to toxicity for the nigrostriatal dopaminergic system the follow-
ing are described as mechanisms of action of Mn-EBDC: inhibition of several complexes of 
the respiratory chain and more particularly complex III, an inhibition of proteasome activity 
and modification of transmitter status in the synaptosom with an increased concentration of 
dopamine, particularly with parallel exposure to other toxins. Numerous studies have shown 
that Mn-EBDC in the animal model has a synergistic effect with other toxins for instance with 
PQ and MPTP. These findings indicate that a number of various DTCs could change the 
kinetics of other toxins and the metabolism of endogenous substances resulting in higher 
neurotoxicity. The manganese contained in Mn-EBDC could also lead to Parkinson's syn-
drome following a possible dissociation of Mn-EBDC into manganese and EBDC. The impor-
tance of manganese in the pathogenesis of IPS is, however, questionable. 
 
3.3.2.4 Rotenone 
 
The isoflavonoid rotenone has not been authorised as a plant protection product in the Fed-
eral Republic of Germany since 1987. No information is available to BfR about its use in the 
non-agricultural sector. It is said to be recommended for organic farming (FIBL, 2003). Rote-
none-containing pesticides may still be authorised in other EU Member States. According to 
the information available to BfR this is the case in Austria and Switzerland. It is also said to 
be used as an insecticide in the USA. 
 
For some years now rotenone has been used in Parkinson's research as typical Parkinson's 
symptoms as well as histopathological characteristics are reproducible in animal models with 
rotenone. Furthermore, given its characteristic of being a high-affinity inhibitor of complex I of 
the respiratory chain, rotenone is used as a mitochondrial toxin in cell cultures. Given its 
lipophile properties, rotenone easily penetrates the blood-brain barrier following subcutane-
ous and intraperitonal administration and leads to an inhibition of the mitochondrial complex I 
in the entire central nervous system. A few days after treatment of rats with rotenone intrave-
nously over a period of several weeks at a dose of 2-3 mg per kg body weight and day, se-
lective degeneration of dopaminergic neurons of the substantia nigra and of the striatum 
were observed. LB-like fibrillar cytoplasmatic inclusions were found in the neurons of the 
substantia nigra and the animals were observed to suffer movement disorders like hypokine-
sia, unsteady movements and bent posture. Some manifested rigidity as well as trembling of 
the paws which was interpreted as regressive resting tremor. The observed changes, in par-
ticular the degeneration of nigrostriatal dopaminergic neurons, movement disorders and cy-
toplasmic inclusions, are similar to those observed in Parkinson patients. 
 
More recent findings would seem to question the selective degeneration of dopaminergic 
neurons and IPS-typical composition of the inclusion bodies in vivo described for rotenone in 
earlier works as the inhibition of the mitochondrial complex I is pronounced in the entire cen-
tral nervous system. It is suspected that the mainly nigrostriatal degeneration can be attrib-
uted rather to increased vulnerability of dopaminergic neurons. The effect of rotenone is 
probably based on a synergistic effect of cytotoxic mechanisms. They include more particu-
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larly the high-affinity inhibition of the mitochondrial complex I with a resulting reduction of 
ATP production and elevated ROS production and direct interaction between rotenone and 
α-synuclein, the accumulation of α-synuclein and accelerated fibril formation. As a conse-
quence of the inhibition of complex I,   the reduction in the ATP production and an elevated  
generation of ROS probably contribute to cell death of dopaminergic neurons. Attention is 
drawn to the importance of the glia concerning the elevated production of ROS. The forma-
tion of α-synuclein-containing inclusion bodies induced by rotenone is mirrored in in vitro 
studies in which an accumulation of α-synuclein was described in conjunction with an ele-
vated cytoplasmic ubiquitin concentration. The formation of α-synuclein fibrils and inclusion 
bodies is promoted on the one hand by ROS. On the other hand it has been shown in in vitro 
studies that rotenone interacts directly with α-synuclein and could lead in this way to a con-
formation change of α-synuclein with accelerated fibril formation. As already mentioned 
above, it is now contentious whether the cytopathology induced by rotenone is in fact typical 
for IPS (i.e. typical for synucleopathy) and should perhaps rather be seen as a typical tau-
opathy. Cell death in conjunction with rotenone exposure manifests characteristics of apop-
tosis. Here it has been shown that the rotenone-induced elevation of the H2O2 concentration 
leads to the breakdown of the mitochondrial membrane and, in this way, to the release of 
cytochrome-c and an activation of caspase 3. 
 
4    Pesticide exposure and Parkinson's syndrome – Summary evaluation 
 
The results of the meta-analysis of 38 epidemiological studies point to a relatively consistent 
association between pesticide exposure and the possibility of developing Parkinson's dis-
ease. The identification of a specific pesticide or a combination of pesticides does not, how-
ever, result from the epidemiological studies. Nor can any time association be derived be-
tween exposure and the onset of the disease. Only a roughly simplified dose-response rela-
tionship can be identified. The data available are not sufficient in order to observe a causal 
relationship between pesticide exposure and the onset of Parkinson's disease. 
 
In addition to these results from the epidemiological studies it can be shown that the typical 
symptoms of IPS and the underlying tissue changes in the central nervous system can be 
reproduced through the application of some pesticides in experimental and mechanistic stud-
ies. By means of repeated or longer parenteral application of some common pesticides a 
dopamin deficiency can be induced in various animal experiments. The temporal and local 
dynamics of the biochemical mechanisms and the resulting behaviour have only been under-
stood to a limited degree up to now.  
 
In the past MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) – a by-product of the syn-
thesis of a heroin substitute – led to Parkinsonism in drug addicts and attracted the attention 
of research into the causes of Parkinson to the hypothesis of the involvement of toxic factors 
in the onset of the disease. As MPTP has a similar structure to the herbicide paraquat, this 
substance in particular is under discussion as a risk factor for Parkinson's disease. There are 
also descriptions of Parkinson-like changes in an artificial model involving the application of 
rotenone. Only limited data are available for other pesticides. 
 
By way of summary, the animal experiments and mechanistic studies indicate a partially se-
lective neurotoxicity of specific pesticides for nigrostriatal dopaminergic neurons. In particular 
for rotenone and paraquat there are in vivo and in vitro results which prove their neurotoxic-
ity. The extent to which these findings can be applied to humans has yet to be clarified as the 
results are from animal models. There are certain indications from these studies on biological 
plausibility that specific pesticides induce symptoms and can cause corresponding histopa-
thological changes. However, these studies do not suffice in order to understand the patho-
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genesis, a difficulty which is understandable against the backdrop of the unknown factors 
contributing to the onset of the disease. This subject matter requires further mechanistic, 
animal experiments and epidemiological studies perhaps in conjunction with genetic linkage 
analyses as it is possible that a genetic predisposition, e.g. along the lines of reduced detoxi-
fication capacity, could lead to increased environmental vulnerability (Gasser, 2005). 
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